
Rapidly Re-Configurable Flight Simulator Tools for

Crew Vehicle Integration Research and Design

Summary of Research
Grant NAG 1-2175

submitted to

NASA Langley Research Center
ltampton VA 23681-2199

for the period
March 30, 1999 - December 31, 2000.

Attention: Paul C. Schutte and Anna Trujillo

Amy R. Pritchett, Sci.D., Principal Investigator
Scbools of Industrial and Systems Engineering and Aerospace Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0205

(Tel) 404-894-0199
(Fax) 404-894-2301

A my.Pritchett@isye.gatech.ed u

December 2000

ABSTRACT

While simulation is a valuable research and design tool, the time and difficulty required to create new

simulations (or re-use existing simulations) often limits their application. This report describes the design of the

software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework

that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides

the interface standards for simulation components, registers and initializes components, and handles the

communication between simulation components. The simulation components are each a pre-compiled library 'plug-

in' module. This modularity allows independent development and sharing of individual simulation components.

Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a

programmable run-time environment for real-time access and manipulation, and has networking capabilities using

the High Level Architecture (HLA).

INTRODUCTION

Simulation is an integral part of aerospace research and design. Its ability to predict complex system

behavior makes it valuable to the analysis and testing of many entities, including vehicles, on-board components

such as avionics systems, pilot-interactive systems such as cockpit displays, flight control systems, and procedures

for operation of vehicles _.

Simulation can fit into all stages of research and design. During basic research and conceptual design, low-

and medium-fidelity simulations can highlight fundamental issues and constraints on system design. As the design

progresses, higher-fidelity models can be added to the system so that its output provides increasingly detailed and

accurate feedback to designers. At the end of design, high-fidelity simulations can serve as a complement to (or

replacement for) flight tests :, and can serve to train the pilots who will first fly the aircraft.

However, despite the theoretical utility of simulations throughout design, the time and resources required to

develop simulation software for research and design projects (henceforth referred to as design projects) can

sometimes limit or prohibit their use. The development of simulation software can take a great deal of time and

resources, to the extent that 'rapid' development has been described as that achievable in weeks to months 3.

Likewise, the development of simulations from scratch requires personnel with substantial skills in many areas,

including software engineering and computer programming, computer graphics, and dynamic modeling.

Lacking the resources to develop a tailor-made simulation (and can not bide the delay it would cause),

design projects commonly re-use already-existing simulation software 4. Existing components may be modified, and

existing simulations may have new components added to provide new functionality.

However, the impact of these modifications is often to make the software unusable for future projects or for

subsequent stages of the design. Unlike 'traditional' simulation projects (which are focused on providing simulation

software of high quality), design projects are often not motivated to maintain software standards, with result that the

software quality can degrade. This concept is shown notionally in Figure 1.

Traditional Project

O
coo

I

Design Project

i | !

I

t

I

I

I

I

t

5... ,4--J

coo

Q

I

\
J

oo .-_ _o_ _ _ _._.8)-.,m .'_- _

_:o FP, o o
c- rv" oO__ I1.

Figure 1. Time History of Simulation Software Quality in 'Traditional' Software Projects, v.s. Design
Projects Where Simulation Is a Tool

Currently, there is no widely available architecture for simulations intended specifically for a

comprehensive range of aerospace research and design needs. Solutions are often oriented towards a single

objective and are difficult to apply or modify to fit additional requirements; for example, pilot-in-the-loop simulators

can be difficult to convert to simulations capable of running fast-time analyses of flight control systems, and vice

versa. Solutions that do provide a wide-ranging and robust framework are proprietary, expensive, platform-specific
or difficult to obtain. 5

The remainder of this paper discusses the design of simulation software meeting the needs of aerospace

researchers and designers. First, these needs are reviewed. Then, object-oriented programming (OOP) and Object-

Oriented Analysis and Design (OOAD) principles are introduced as mechanisms for developing a suitable

framework. Based on this discussion, the development of the Reconfigurable Flight Simulator (RFS) is outlined.

REQUIREMENTS OF SIMULATION FOR RESEARCH AND DESIGN

Simulation may be applied in many different ways in aerospace research and design. Conceptual vehicle

design may use lower fidelity simulations of single-aircraft flight dynamics as a tool to analyze vehicle sizing and

configuration; human factors experiments may use mid-fidelity pilot-in-the-loop simulations; avionics prototyping

and design may use simulation as a hardware-in-the-loop testing mechanism; design of operational procedures or

mission scenarios may use batch simulations of multiple vehicles; flight control design may use fast-time

simulations with high fidelity vehicle dynamic models; and flight tests require a flight simulator with fidelity high in

every measure.

This range of needs highlights the need for a design project to have a simulation tool available that is

flexible; i.e. the simulation should not be fundamentally constrained by its basic architecture to one mode of

operation or to one level of fidelity.

A simulation for design projects must also accommodate user types that are fundamentally different than

the users of current flight simulators. The first is that of the general user, who wants to use the simulation as part of

his or her day-to-day design activities. The general user can be defined as a designer who does not want to interact

with source code or recompile software. While all simulations must support general users, design projects are novel

in that their general user is quite knowledgeable, and desires considerable power over the simulation so that he or

she can reconfigure it and use it in a number of ways. With normal flight simulations, the general user is shielded

from the underlying functionality through graphical user interfaces or simple configuration scripts_; in simulations

for design projects, the general user benefits from greater power over the simulation.

Unlike most simulation software packages, simulations for design projects must provide support for an

additional user class - that of the developer. In traditional software projects, developers are normally dedicated

programmers and software engineers, whose primary purpose is to program the simulation. In design projects, the

developer is often a member of the design team with some programming knowledge; the developer's purpose is to

get the simulation running as a tool. In this case, the developer is motivated to get the simulation running quickly

without any supervision of software quality. He or she may not be in a situation to understand the complete

workings of all the simulation components, and therefore may not understand the impact of their modifications.

Additionally, the developers in design projects may be distributed throughout an organization.

As such, simulation software for design projects must be designed to be inherently robust and

programmable. robust in that modifications to one part of the software should not have widespread, unanticipated

effects on other parts of the software; programmable in that the developer should find the overall framework of the
simulation easy to understand, and he or she should quickly be able to find where and how modifications should bc
made to evoke the desired behavior.

To support design projects, simulations must be inherently extendable; i.e. it should be easy to add new

functionality to the simulator through the addition of new components, rather than through fundamental changes to

the entire architecture. Likewise, the components should be maintained in a form such that new components can be

added to the simulation without destroying currently existing functionality.
Finally, a simulation will be the most suitable for wide-spread use if several practical considerations are

met. For example, many design projects do not need simulations of such high-fidelity that they can not be run on

Pentium-based personal computers, while other simulations may be so computationally expensive as to warrant

investment in high-speed computers. As such, simulations that are restricted to one platform inherently limit their
distribution. Likewise, simulations have more general utility when they do not require specific external hardware or

peripherals.

OBJECT-ORIENTED ANALYSIS AND DESIGN

As programs have grown in complexity, Object-Oriented Programming (OOP) has been proposed to creato

software easy to design, modify and re-use 5. OOP principles include: abstraction, inheritance, layering,

encapsulation, and polymorphism.

Abstraction refers to the ability of OOP to define computational structures not as a sequence of logical

functions, but as independent objects, each containing the functions (methods) and data required to perform the

functions of that object. With this ability, the software engineer's design process relies on abstracting the overall

behavior into individual objects, and then determining their functioning. Objects may themselves contain an inner

hierarchical structure of lower-level objects.

Abstraction allows for the entire program to be viewed at the level of abstraction appropriate for the task.

For example, a flight simulation architecture may, at a high-level of abstraction, be viewed as a collection of input-

output objects, vehicle objects, and a timer object; conversely, a designer interested only in the lower-level task of

improving the fidelity of a vehicle module can focus on that vehicle object alone, without needing to see the
structure of the rest of the software.

Abstraction also provides a mechanism to structure the software using the same abstractions that are used

by other domains. For example, an aircraft object could be broken down into sub-components in many different

ways, a common choice is to mirror the different on-board systems (engines, flight controls, etc.). Various works in

the literature have described suitable object definitions for flight simulators _.

Inheritance refers to the ability, using OOP, to define base interface standards for the behavior of a type of

object. For example, a base or parent 'aircraft' object might define what functions any aircraft object must be able

to perform, and how its data can be accessed. Modules capable of simulating specific aircraft can then inherit from

this base aircraft, providing specialization and additional functionality while guaranteeing that these modules will

interact with the rest of the program like any object of type aircraft.

Once objects have been defined, OOP's capacity for layering can be applied; i.e. smaller, more primitive

types of objects can be combined to create larger, more sophisticated objects. For example, an airport type might be

made from a combination of runway, tower, hangar and taxiway objects.

Encapsulation is a mechanism by which low-level details about an object are 'hidden' within that object

type, so that the entire program does not need to have access to, or work on, the low-level variables internal to an

object. For example, an aircraft object type might be required to provide other objects with useful variables such as

position, velocity, etc., while variables useful only to the aircraft dynamic model (such as stability derivatives) are

encapsulated to stay within the aircraft type.

Polymorphism is an OOP mechanism by which objects inheriting from a parent class can add new

functionality while still meeting the base specifications required of the parent class. This feature allows for objects

inheriting from the same type to be used interchangeably, a mechanism for code re-use and for reconfiguration.

With the development of these mechanisms, OOP was intended to support software re-use and reduce
development costs g. However, it was subsequently found that, without additional guidance, OOP can result in

unworkable software. For example, introduction of C++ into industry exposed major problems. The first truly

large-scale project using C++ and OOP was undertaken in 1988 at Mentor Graphics with the decision to completely

redesign their CAD application. The project missed its March 1990 deadline by a year. Beta testing sites reported
unusually large numbers of errors, and programmers found it difficult to maintain and correct the code. 9

Object-Oriented Analysis and Design (OOAD) guidelines and principles have subsequently been developed

and tested. OOAD does not add additional mechanisms to those provided by OOP; instead, it specifies effective
uses of those mechanisms.

One principle of OOAD is the reduction of overall software complexity. This objective can be achieved by

reducing extraneous complexity, and by balancing the complexity. For example, an OOP application could

theoretically have many simple objects each capable of only one function, or have only one object capable of all

their functions; either extreme makes the software appear complex to a developer. OOAD principles require
developers to reduce overall complexity in an object-oriented design

Another OOAD principle is the elimination of cyclic dependencies. An example of cyclic dependencies is

shown in Figure 2; three objects all have the capability to call each other's methods. In such a situation, the

abstraction of having higher- and lower-level objects breaks down, and other objects in the simulation can not be
certain whom to contact to get data from, or give data to, the entire aircraft. To a developer new to the simulator,

understanding this implementation can be very difficult.

"Your aileron I _ "User says to

lshouldbe a!. ,,_

Vehicle

"Update with my
new stater

Display

i

Figure 2. Illustration of cyclic dependencies

Other OOAD principles advise avoiding intrinsically coupled objects. With encapsulation, objects should

keep their internal functioning private. However, poorly-designed objects make many of their methods and

variables public; in such cases, objects can involve themselves in the internal functioning of other objects. Such

internal couplings can result in the violation of abstractions about the functions of objects; as such, modifications to

one object might affect a different object in a manner not foreseeable by a programmer. Such situations make the

software hard to understand because the control logic for a single process can jump from object to object, and makes

testing very difficult because objects cannot be tested independently.

Objects will need to depend on other objects for data. For example, a specialized engine display may

require data that can only be provided by a specialized engine model. However, these dependencies can proliferate

to such an extent that the use of objects is not reduced to isolated configurations or combinations, as shown in Figure

3. OOAD guidelines help prevent such a proliferation.

In summary, OOP can provide the much needed benefits of understandable, readily modified, easily re-

used software. However, these benefits can

Display --_

V_hicJe]

Display

Pilot

Pilot

V hicle I

Figure 3. Proliferation of Dependencies Between Objects

only be fully realized if OOAD principles and guidelines are followed. These OOAD stipulations can not be met

through low-level programming standards that specify only such items as conventions for naming variables -

instead, they require the software architecture to be well-thought-out from its inception.

DESIGN OF THE RECONFIGURABLE FLIGHT SIMULATOR

The Reconfigurable Flight Simulator (RFS) was designed to meet the requirements of a simulator useful for

aerospace research and design activities. The architecture was designed in an object-oriented manner with attention

to OOAD principles. It is programmed in C++, with graphics capability provided by OpenGL, to facilitate

portability across platforms.

Overview of the Simulator Architecture

The RFS is highly modular. The main RFS application does not contain any simulation models. Instead,

as shown schematically in Figure 4, the main application provides the run-time support for individual simulation

components. This run-time support includes initializing and registering the individual components, and providing

communication between them. The main application also contains the interface standards that the components must
inherit from.

The components, or plug-in modules, are each stored in a precompiled library that can be loaded by the

simulator during run-time. The user can select from a library of available components to configure the simulation as

desired for any particular run. Developers can extend the capabilities of the simulator by creating new modules.

The major components of the RFS are shown in Figure 5. Arrows in this diagram represent the access each

component has to other objects in the simulation. Cyclic dependencies were avoided by creating a hierarchy within

the components; in the dependencies shown, for example, the scenario object can call the four types of objects that

are 'underneath' it, the simulation controller objects can call three types of objects, and so on, with the

Environmental Controller and Database (ECAD) object at the bottom of the chain. All of the objects are based on a

simulation foundation class (SFC). This is represented in the dependency diagram shown in Figure 6.

To provide a dynamic framework, the RFS architecture supports swapping, removing, and loading

components in the simulation during run-time. To prevent problems with violation errors (where objects attempt to

access components that have been removed) and to ensure that a newly-loaded component is used properly by other

objects, a notification system notifies all components when discrete changes occur.

I Main RFS Application [

Available Display
Modules

PFD/ND

I Hardware Interface [

Graphing Window

Cessna Cockpit

Available

Vehicle

Modules

I 747

Cessna I

MD-11 I

Figure 4. Simulation Access of Components

I SimulationController
ObJect

f----

Simulator Object

Soe°.,oO ,ec.I I = .e or ,°te aceO ,eo=
i I

L
L-

I

' i....... J

Figure 5. Main RFS Components

(Arrows Represent Access to Other Objects In the Simulation)

I Simulation I

I S..ario '1
I

I Simulation I
Airplane I INetworklnterface_ I0I C°ntr°ller] I I

I I [J
T

I Vehicle I

]Timer Classl[

I _c I

Figure 6. Dependency Diagram of the RFS Standard Interfaces

Components Within RFS

The components of RFS are listed in Table I, with a brief description of their functions within the
simulation. Some of these components provide the functionality within the main RFS application; others establish

the standard interface for plug-in modules.

The component-based design of the RFS allows developers to create plug-in modules providing new

vehicle models, displays or simulation controllers. Because these components are stored in linked-lists in the

Table1. Descriptionof Core Simulator Objects

Components Integral to the Main RFS Application

SimulationObject

ScenarioObject

lnterpreterObject

TimerObject

ECAD

VehicleList

This object is the main object in the simulation. The SimuationObject maintains all other

objects that will take part in a simulation, which entails establishing communication links

between objects in the simulation, and ensuring that all objects are notified when an object

is destroyed or is no longer taking part in the simulation. The simulation object is also

responsible for implementing the main simulation loop, notifying each component and

providing them with the new simulation time each time through the loop.

The scenario object maintains the simulation modules. It is responsible for loading and

unloading DLL modules and extracting objects from the modules. Once loaded, the

scenario object is responsible for placing these objects in their appropriate location.

The interpreter object is responsible for providing users with the ability to manipulate

objects at the method/attribute level in real-time. This object translates user commands

into method calls and attribute queries, accepting text strings that are in a format similar to

C++. The interpreter object also provides for remote method invocation when RFS is

operating over a network. Method invocations are passed over the network and received

by this object, which interprets and dispatches the invocation.

The timer object is responsible for maintaining the simulation time, providing components

with a common resource for timing needs. The user can manipulate the simulation time

through this object. The timer can operate in many different modes, including real-tinae by

referencing the system clock, or in fast-time.

The Environmental Controller and Database object provides the simulation with a

database for environmental data, including terrain, wind information, and a navigational

aide database. The ECAD further provides axis definitions for common axis systems that

will be used by the simulation as well as conversion routines between these systems.

This object maintains all vehicles in the simulation in a collection, which is implemented

as a linked-list. Components in the simulation can retrieve particular vehicles by

traversing this list. The VehicleList can also distribute certain methods invocations to all
vehicles that it contains.

IOList

ControllerList

This object implements a collection of I/O (input/output) objects, implemented as a

linked-list. Input/output objects include any component that serves in an I/(3 capacity.

Hardware interfaces, data storage components, pilot input devices, and avionics displays

are all considered to be I/O objects in the RFS.

This object implements a collection of simulation controller objects. Simulation
controllers are objects that manipulate or control some aspect of the simulation. Examples

include ATC controller models, randomly generation of aircraft to place in an air traffic

control simulation, and discrete events at scripted times such as mechanical failures.

Base Interface Standards for Components to be Added by Developers

BaseVehicle This interface object defines communication for vehicles in the simulation. All vehicles

in the simulation, including airplanes and ground vehicles, implement this interface.

Components can access common parameters such as position, orientation, and velocity. A
baseAircrafi interface standard has also been created that inherits from this interface.

BaselO

BaseController

This interface defines communication for I/O (input/output) objects. This interface

comprises mostly of callbacks invoked when certain simulation events occur (such as

starting and stopping the simulation, or the start of each time step).
This interface defines communication for simulation controller objects, comprised mostly

of virtual callback methods. Simulation controllers must implement this interface.

simulation,thenumberofeachwhichcanbeincludedin a simulator configuration at one time is limited only by the

computer hardware on which the simulator is being run. The functionality of the main RFS application can also be
extended.

This component-based architecture has several advantages. Developers in different locations and on different

projects can create new components and upload them to a central repository; as such, a distributed development

environment is possible. Since each module is encapsulated, the developer can work on individual modules without

needing knowledge about other components. This facilitates code re-use and reducing the amount of time to tailor

the simulation to particular applications. In addition, simulation developers do not require a broad range of

expertise. For example, a flight controls designer need only modify an aircraft's dynamic model and flight control

design, using established display modules without needing knowledge of computer graphics.

General users also benefit from this architecture, as they can create new simulations from this growing

library of modules. Also, a simulation user can store only those components that are needed for their applications,

reducing storage requirements.

This paper has focused on how these components are fit into the RFS framework. The specific details of

their underlying models are already well covered in the existing literature, ranging from aircraft dynamic models t° to

computer graphics forex,mpte.I I.t2. Also, graphical programming tools, and code generators are increasingly prevalent

for these types of components fo_example.n.14

Object Data/Method Extensions

The base objects within the main RFS application define the minimum communication standards for

components within the simulation. However, if these standards were the only communication mechanism, then they

would constrain the components unnecessarily. For example, a particularly intricate display may require

information from an aircraft that is not available through the base vehicle interface.

To extend these base vehicle definitions, the Object Data/Method Extensions (OD/ME) interface was

created. It establishes a generic, simulation-wide mechanism for message and data passing between objects.

All objects in the RFS have OD/ME capabilities built into their base classes, giving them the ability to
declare methods and variables to the entire simulation. The variables can be write-able or write-protected. Other

components can then access these methods and variables through the OD/ME interface.

OD/ME adds to the simulation the power to use components with arbitrary communication requirements;

this corresponds to an ability to include components of arbitrarily high fidelity and detail. However, because it

passes through an interpreter, OD/ME access can be an order of magnitude slower than direct access through the
base class interfaces.

User Control Over Simulation Runs

The OD/ME interface also provides the user with the ability to access all aspects of the simulation during
run-time. The most basic method of access is through Graphical User Interfaces (GUIs), such as data viewer

windows and graphing windows; such GUIs can be implemented as components meeting the base IO object
interface standards.

In addition, the interpreter object can map strings of characters to specific method invocations or data

requests. As such, the user can control the simulator directly through text commands in a command-line window.

Commands are entered through the console window and parsed by the interpreter. The parsed commands are stored

as character strings in the computer memory, which OD/ME can map into method invocations or data retrieval. In

this way, the user can manipulate during run-time any object in the simulation through method invocations and data

access.

This interpreted access is a powerful feature of RFS. Interpreter commands were built into RFS that allow

the user to control the simulation through the command line window, including the ability to add new components to
the simulation, and to list all methods and variables that are available within any active component. The interpreter

language is similar in form to C++, so that developers and users will not need to learn a new syntax. Developers can

test new components from the command line by executing their methods one-by-one. Interactions between

components can be configured during run-time to meet the needs of the task; for example, a button from a joystick
can be mapped to any method of any component active in the simulator, so that pressing the joystick button can
execute the method.

Commandlineinputscanalsobestoredinplaintextscriptfilesthattheinterpreterobjectcanaccess.As
such,generaluserscanconfigurethesimulatorbeforerun-timethroughplaintextfiles,withoutrequiringanyaccess
tothesourcecodeorrecompilation.Thesescriptfilescanalsocontainreferencestootherscriptfiles,sothat
standardconfigurationscanbedefinedandreferredto,reducingthecomplexityofanyindividualscriptfile.

Networkin_

Networking has proven invaluable for performing simulations when the processing load is too great for a

single processor, as is common in flight simulations with high-fidelity dynamic models and/or extensive graphics.

Networking is an integral part of many contemporary architectures. For example, the LaSRS++ simulator requires

that all components access shared memory, which can be passed between machines running the simulation.
However, as is common in current simulation architectures, the networking is at a 'lower-level' than the vehicle,

making the vehicle object dependent on the networking object. As a result, changes in networking methods or

configuration may require modifications to all components that use networking.
The RFS architecture opted to place the networking a higher level then the components, with the result that

networking capabilities are transparent to component developers and components do not need to build in special
features to access the networking interface (Instead, the burden is placed on the developer of a networking interface

to determine the information that is to be passed). Further, the overall architecture is not reliant on a single

networking protocol. Currently, a networking component has been developed that uses the High Level Architecture

(HLA) standards, but other networking protocols can be created and used.

CONCLUSION

This project developed simulation suitable for use as a general research and design tool. While simulation

can bring powerful analysis capabilities to research and design, its use has traditionally been limited by the time and

resources required it, and by the use of different simulation architectures in different domains.

The RFS provides a framework that is extremely flexible and extendable to fulfill these needs. Simulation

users are provided with near-complete control over the simulation and its components, and can build on existing

components to rapidly create new prototypes and solutions.
Through adherence to OOAD principles, the simulation architecture can benefit developers by helping

them avoid the common pitfalls of object oriented development while delivering a system that is easy to understand,

use, and adapt for a particular purpose. Further, the ability to run on desktop machines without specialized and

expensive hardware provides instant accessibility to users and developers on a well-known and easy to use platform.
The RFS has proven to be a stable and scalable platform for development. Designers benefit from a library

of components that facilitate development, such as real-time monitoring and graphing components, as well as

features such as the programmable real-time environment to provide extreme control over all objects in the
simulation during run-time. The RFS has been used for a variety of simulations, from fast-time large-scale
simulations of air traffic control _5, to single-aircraft pilot-in-the-loop studies of cockpit systems t6.

Through its flexible architecture, the RFS provides a single software simulation solution for the entire

design process. As a design matures, it requires a simulation that can adapt to new requirements and higher fidelity.

The RFS provides a flexible and scalable framework for early design work which can adapt as more detailed and
accurate simulations are required. For conceptual design and exploratory prototyping, component reuse and

modification of existing capabilities can provide a fast solution. As the design progresses and requirements grow,

the RFS adapts by allowing the development and integration of higher fidelity components, hardware interfaces, and
other tools to expand the simulation as requirements grow, such as HLA networking to distribute processing load to

multiple processors.
The availability of simulation architectures suitable for a wide-range of research and design activities (such

as RFS) can be reasonably predicted to have a dramatic impact on aerospace research. Research practices can
benefit from a simulation that allows for different researchers to share components and test each other's conclusions.

Likewise, the general availability of a simulation may enable small research groups to apply better simulation tools

then previously possible.
Such simulation architectures may also have a dramatic impact on aerospace design practices. Designers'

needs in a simulation mature as the design proceeds 3'_7. A simulation that can progress in maturity and be used in

every stage of the design can serve not only as an analysis tool, but as the repository of design knowledge, to which

designers add increasingly detailed specifications in the form of simulation components.

l0

REFERENCES

Tuohy, S.T. "An Integrated Vehicle Simulation For the Development and Validation of a Commercial Reusable

Launch Vehicle" AIAA Modeling and Simulation Technologies Conference and Exhibit, Boston MA.
2 Totah, J.J. and Kinney, D.J. (1998) "Simulating Conceptual and Developmental Aircraft" AIAA Modeling and

Simulation Technologies Conference and Exhibit, Boston MA.

Norlin, K.A. (1995) "Flight Simulation Software at NASA Dryden Flight Research Center" AIAA Modeling and

Simulation Technologies Conference and Exhibit.

4 Walker, W.H. and Kircher, R.C. (1997) "Modern Component Methods for Air Transport Engineering Simulation

Software" AIAA Modeling and Simulation Technologies Conference and Exhibit, New Orleans LA.

s Leslie, R.A., et al (1998) "LaRS++ An Object-Oriented Framework for Real-Time Simulation of Aircraft" AIAA

Modeling and Simulation Technologies Conference and Exhibit, Boston MA.

6 Khoshafian, S. and Abnous, R. (I 995) Object Orientation: Concepts, Analysis & Design, Languages, Databases,

Graphical User Interfaces, Standards, Wiley, New York NY.

7 Paterson, D.J. (1998)"Simulation Middleware Object Classes (SMOC) for Simulation and Modeling

Applications" AIAA Modeling and Simulation Technologies Conference and Exhibit, Boston MA.

8Alagic, S. et al (1996) "Object-Oriented Flight Simulator Technology" AIAA Modeling and Simulation

Technologies Conference and Exhibit, San Diego CA.

9 Lakos, J. (1996) Large Scale C++ Software Development, Addison-Wesley, Reading MA

io Stevens, B. and Lewis,F. (1992) Aircraft Control and Simulation, Wiley, New York NY

_l Foley, J. et al. (1995) Computer Graphics: Principles and Practice, Addison-Wesley, Reading MA

_2Woo, M. et al. (1997) OpenGL 1.2 Programmers Guide, Addison-Wesley, Reading, MA.

_3lppolito, C.A. and Pritchett, A.R. "SABO: A Self-Assembling Architecture for Complex System Simulation", The

38th AIAA Aerospace Sciences Meeting and Exhib#, Reno NV.

_4Robins, A. et al (1998) "Commercial Visual Programming Environments: One Step Closer to Real Simulation

Reuse" A1AA Modeling and Simulation Technologies Conference and Exhibit, Boston MA.

_5Pritchett, A.R., Lee, S.M., Huang, D. and Goldsman, D. (2000) "Hybrid-System Simulation for National Airspace

System Safety Analysis", AIAA Modeling and Simulation Technologies Conference and Exhibit, Denver CO.

_6Pritchett, A.R. and Yankosky, L.J. (2000) "Pilot Performance at New ATM Operations: Maintaining In-Trail

Separation and Arrival Sequencing", AIAA Guidance, Navigation and Control Conference, Denver CO.

t7 Williams, G.B. (1997) "The Boeing Commercial Airplane Engineering Simulation, New Airplane Project,

Management Observations" AIAA Modeling and Simulation Technologies Conference and Exhibit, New
Orleans LA.

11

